Inter-domain Cross-linking and Molecular Modelling of the Hairpin Ribozyme

David J. Earnshaw¹, Benoît Masquida², Sabine Müller¹
Snorri Th. Sigurdsson³, Fritz Eckstein³, Eric Westhof²
and Michael J. Gait ¹*

¹Medical Research Council
Laboratory of Molecular Biology, Hills Road, Cambridge
CB2 2QH, UK
²IBMC-CNRS, 15 rue René Descartes, F-67084 Strasbourg
France
³Max-Planck-Institut für Experimentelle Medizin
Hermann-Rein-Strasse 3
D-37075, Göttingen, Germany

The hairpin ribozyme is a small catalytic RNA composed of two helical domains containing a small and a large internal loop and, thus, constitutes a valuable paradigm for the study of RNA structure and catalysis. We have carried out molecular modelling of the hairpin ribozyme to learn how the two domains (A and B) might fold and approach each other. To help distinguish alternative inter-domain orientations, we have chemically synthesized hairpin ribozymes containing 2'-2' disulphide linkages of known spacing (12 or 16 Å) between defined ribose residues in the internal loop regions of each domain. The abilities of cross-linked ribozymes to carry out RNA cleavage under single turnover conditions were compared to the corresponding disulphide-reduced, untethered ribozymes. Ribozymes were classed in three categories according to whether their cleavage rates were marginally, moderately, or strongly affected by cross-linking. This rank order of activity guided the docking of the two domains in the molecular modelling process. The proposed three-dimensional model of the hairpin ribozyme incorporates three different crystallographically determined structural motifs: in domain A, the 5'-GAR-3'-motif of the hammerhead ribozyme, in domain B, the J4/5 motif of group I ribozymes, and connecting the two domains, a “ribose zipper”, another group I ribozyme feature, formed between the hydroxyl groups of residues A₁₀, G₁₁ of domain A and C₂₅, A₂₄ of domain B. This latter feature might be key to the selection and precise orientation of the inter-domain docking necessary for the specific phosphodiester cleavage. The model provides an important basis for further studies of hairpin ribozyme structure and function.

*Corresponding author

Introduction

Small catalytic RNAs have been discovered in a number of types of viroid, virusoid and satellite RNAs and are fascinating paradigms of RNA structure and function (Long & Uhlenbeck, 1993; Pyle, 1993; Symons, 1992). The hairpin ribozyme, which is derived from the catalytic centre of the negative strand of the satellite RNA of tobacco ringspot virus, is the second smallest catalytic RNA (reviewed in Burke (1994) and Burke (1996)), but so far there is no crystallographic and very little other structural data available for this ribozyme.

The chemical outcome of hairpin ribozyme action is phosphodiester cleavage at a defined location to generate 5'-hydroxyl and 2',3'-cyclic phosphate moieties on the resultant ends, which is identical to the outcome of hammerhead ribozyme cleavage. Yet the methods of achieving such cleavage appear to be very different. For the hammerhead ribozyme there is strong evidence for participation of magnesium ion both in the deprotonation of the proximal 2'-hydroxyl to generate...
the attacking oxyanion (Dahm et al., 1993) and in the lowering of the activation energy of the transition state by binding the pro-Rp oxygen of the scissile phosphodiester (Dahm & Unlenbeck, 1991; Koizumi & Ohtsuka, 1991; Slim & Gait, 1991). The direct pro-Rp chelation has now been observed directly by an elegant “freeze-trapping” crystallographic technique (Scott et al., 1996). By contrast for the hairpin ribozyme, the metal ion dependency seems to be quite different (Chowrrira et al., 1993a) and direct magnesium interaction with a non-bridging oxygen atom of the scissile phosphate appears less likely (Young et al., 1997; D.J.E. & M.J.G., unpublished results).

A second difference is structural. Whereas the hammerhead catalytic core is formed by folding of a 3-way junction connecting RNA duplexes, two of which are coaxially stacked (Pley et al., 1994; Scott et al., 1995), the hairpin attains its catalytically competent state by docking of two apparently separable domains, each of which consists of a pair of helices interposed by a region of internal loop (Figure 1). In the trans-cleaving mode, domain A is formed by annealing of the substrate strand to one section of the ribozyme strand to form helices 1 and 2. Domain B is formed by folding back of a second part of the ribozyme strand onto itself. This generates helices 3 and 4 as well as a terminal three-base loop. Domain B can also be formed from two annealed strands of RNA if helix 4 is extended by three base-pairs and the terminal loop is omitted (Chowrrira et al., 1993b; Grasby et al., 1995).

From studies where the two domains are constrained by linkers of variable length between residue -5 on the substrate strand and residue 50 on the ribozyme strand (Feldstein & Bruening, 1993; Komatsu et al., 1994), it appears that these domains are hinged at the junction of helices 2 and 3 (between residues 14 and 15) such that the ribozyme can bend and the two internal loop regions can approach each other (Figure 1). By linking the two domains in a completely different “reverse” configuration (i.e. internucleotide bonds 14-15 and 30-31 in the ribozyme strand are broken and residue 1 linked to residue 30 via a number of cytidine residues) it was also found possible to maintain ribozyme activity (Komatsu et al., 1995). More recently it has been shown that the two domains can be completely separated into independent sections and ribozyme activity reconstituted by addition of one to the other, albeit at high magnesium ion concentration (Butcher et al., 1995; Komatsu et al., 1996; Shin et al., 1996). Whereas separation of the domains results in a 10^4-fold increase in K_cat, there is remarkably little effect on k_cat (Butcher et al., 1995). Attachment of a complementary pairing arm to an end of each domain, such that base-pairing brings the two domains into contact, allows ribozyme activity under more standard magnesium ion concentration (12 mM) (Komatsu et al., 1996). All these results suggest that tertiary interactions are required between the two domains to achieve catalysis.

A second conclusion that can be drawn from these experiments is that each domain must undergo an initial folding process before the two domains approach. These “ground state” structures subsequently may then become altered as the two domains approach to attain a catalytically competent state. A solution structure for isolated domain A has been proposed based on NMR spectroscopic measurements (Cai & Tinoco, 1996). Here the sequence of the domain within the looped region is similar to the natural hairpin except for an A to C alteration at position -1 in the substrate, the identity of which is non-essential (Hampel et al., 1990; Joseph et al., 1993). The NMR data are consistent with a sheared base-pair between G_{1-2} and A_{3} and a wobble pair between a protonated A_{10} and C_{-1}. In addition, the bulging of U_{3} allows the stacking of A_{3} upon C_{1-4} and hydrogen-bonding between G_{9} and the ribose rings of G_{1-4} and U_{12} (Figure 1).

Although no NMR data is yet available for the structure of domain B, other structure-probing techniques have been utilized. A detailed study of the accessibilities of the ribozyme to chemical modifying reagents under different conditions suggested that domain B folds independently of substrate binding (Butcher & Burke, 1994b). Another informative finding was that a stable UV

Figure 1. Secondary structure of the catalytic core of the (--)RSV hairpin ribozyme. The four helices (H1 to H4) are represented by the two internal loops (A and B). Postulated base-pairs within loops A and B are depicted by broken lines (Butcher & Burke, 1994b; Cai & Tinoco, 1996). Wavy arrow represents a UV cross-link observed between positions U_{42} and G_{21} (Butcher & Burke, 1994a). Plain arrow indicates the cleavage site. Note that residues on the substrate strand are denoted with plus or minus signs on either side of the cleavage site, whereas residues on the ribozyme strand are numbered without sign.
cross-link could be formed between G$_{21}$ and U$_{41}$ (Butcher & Burke, 1994a), later reassigned to U$_{42}$ (Burke, 1996). The cross-linked domain was reduced about 100-fold in ribozyme activity but the results suggested nevertheless a close positioning of G$_{21}$ and U$_{42}$. The nucleotide sequence in this region was found to be very similar to that of other UV sensitive domains such as those found in the loop E of eukaryotic 5S RNA and in the conserved C domain of viroids. From these studies Butcher and Burke proposed a partial secondary structure model of this section of loop B involving non-canonical base-pairs between G$_{21}$:A$_{43}$, A$_{22}$:U$_{42}$ and A$_{23}$:A$_{40}$ (Figure 1; Butcher & Burke, 1994a,b).

We now wished to obtain a preliminary molecular model of how the two domains of the hairpin ribozyme might fold and orient towards each other as they approach the active configuration. In order to distinguish alternative possibilities for docking of the two domains, we have utilized a cross-linking procedure to tether particular nucleoside residues in domain A to other nucleoside residues in domain B. Because the chemistry of such cross-linking is defined precisely, we hoped that the tethers could act as a "molecular ruler" to help distinguish those residues which are severely distorted by cross-linking and which therefore have difficulty in attaining an active configuration from those residues where cross-linking results in little or no distortion. The cross-linking data might thus help distinguish alternative docked conformations.

Results

3D Modelling of the hairpin ribozyme

The hairpin ribozyme is composed of two domains each consisting of an internal loop (A or B) flanked by two regular A-helices (H$_1$, H$_2$ and H$_3$, H$_4$, respectively). The strategy for modelling was divided into two steps: (i) individual modelling of domains A and B for the 3-stranded ribozyme used for cross-linking (Figure 2); followed by (ii) docking of the two domains. The first step could be carried out with the help of existing data in the literature, whereas the second step of docking required further data to help distinguish alternative possibilities for interdomain orientation.

Individual modelling of loops A and B

Loops A and B were modelled starting from NMR structural models (Cai & Tinoco, 1996; Wimberly et al., 1993) and then integrated between H$_1$-H$_2$ and H$_3$-H$_4$, respectively. The modelling uncertainties resulting from sequence divergences between our system and those studied by NMR could be circumvented by considering the available probing data (Butcher & Burke, 1994b). These data provide guidelines for checking the validity of each model in a whole ribozyme context, since the sequences of loops A and B studied by probing match perfectly those of our system. However, the modelling of internal loops with non-canonical pairings is fraught with pitfalls and, by necessity, requires decisions based on specific structural hypothesis. As a general rule, we have tried to incorporate previously identified RNA motifs. The models of each domain are shown in Figures 3 and 4.

Loop A

Although the sequence of loop A in the present work differs from that studied by NMR (Cai & Tinoco, 1996) at position "−1", where an A instead of a C is present, the probing experiments yield a protection pattern compatible with the stacking of A$_{10}$ between the "sheared" base-pair A$_9$ (N$_6$, N$_7$)-G$_{+1}$ (N$_3$, N$_2$) and the H$_2$-closing Watson–Crick base-pair C$_{−2}$-G$_{11}$. Although positions 10 and −1 do not covary (Chowririr & Burke, 1991), A$_{−1}$ and A$_{10}$ could interact in a non Watson–Crick manner, in agreement with NMR data which suggest stacking between these positions and the adjacent canonical pair (Cai & Tinoco, 1996). The resulting pair involves the N$_6$ atom of A$_{10}$ with the N$_3$ and O$_2'$ atoms of A$_{−1}$, a sheared A·A pair as seen recently by crystallography (Cate et al., 1996). Interestingly, it is almost isosteric to an A·C with H-bond contacts between A$_{10}$(N$_6$) and C$_{−2}$(O$_2$, O$_2'$). The geometry of the A$_{10}$·A$_{−1}$ base-pair optimizes stacking interactions between A$_{10}$ and A$_{−1}$ on the ribozyme strand as
well as between A_{-1} and G_{+1} on the substrate strand. At the same time, it buries A_{10} (N7), in agreement with the observation that this residue is the least sensitive to modifying agents in loop A (Butcher & Burke, 1994b). It is worth noting that the small distance between atoms G_{+1} (O3') and A_{9} (P) prevents residues U_{+2} and G_{9}, both adjacent to the sheared pair, from interacting in a canonical way (Gautheret et al., 1994). The formation of the sheared pair thus forces U_{+2} to bulge out while G_{8} remains stacked within the helix (Figure 3), providing an explanation for the cross-strand contacts of G_{8} with G_{+1} and U_{+2} and for the kink in the helix, which both generate intricate NMR contacts between C_{+3} and A_{9} (Cai & Tinoco, 1996). Moreover, the introduction of a bulge into the structure confers on loop A a dynamic motion in which a flip of the bulge could decrease or increase the
kink. This could play some role during the docking of loop A with loop B. The subsequent insertion of loop A between H1 and H2 follows naturally from the geometry of the first and terminal base-pairs of the loop which places the connecting atoms 5'P and 3'O within a distance of 18 Å, compatible with standard helical RNA.

Loop B

The base-pairing schemes of internal loop B were settled by taking advantage of the NMR structural models of the loop E of eukaryotic 5S rRNA (Wimberly et al., 1993) and of the sarcin/ricin loop from the 23S rRNA (Szewczak et al., 1993) following the sequence similarities in the common UV cross-link loops (Butcher & Burke, 1994a). The UV cross-link motif was modelled accordingly to form a sheared base-pair between residues G21 and A43 and a Hoogsteen-trans A22, U43 (Figure 4). This choice is corroborated by probing results (Butcher & Burke, 1994b). Furthermore, the lower reactivity of the Watson–Crick sites of A26 compared to the N7 modification would argue for a Watson–Crick pair with C44 involving atoms N6 and N1 (in the protonated state) atoms of A26 towards atoms N3 and O2 of C44, since these bases are inserted between two helical base-pairs (G36-C45 and G21-A38). But any type of H-bonded, neutral cis base-pair, such as the A26(N1)-C44(N4) present in the model, could fit without raising geometrical problems, in agreement with recently published results (Siwkowski et al., 1997).

For the remaining part of loop B, we exploited the effects of nucleotide analogues on hairpin catalysis (Grasby et al., 1995; Schmidt et al., 1996a) as well as structure probing results (Butcher & Burke, 1994b). These data provide a basis for the proposal of an original interaction scheme which allows for the formation of tandem sheared A-A pairs, respectively for A38-A24 and A40-A32, in a geometry similar to that of the J4/5 junction recently seen in the crystal structure of a portion of a group I ribozyme (Cate et al., 1996). The unpaired base in the consensus of J4/5 (A115 in the Tetrahymena thermophila group I intron) corresponds to the residue proposed to bulge within the narrow groove of the helix in both NMR structural models of the UV-crosslink loops (Szewczak et al., 1993; Wimberly et al., 1993), thus giving further support for unpairing this residue. U39 is the candidate in the hairpin ribozyme loop B for bulging out, since it is strongly reactive to the carbodiimide reagent CMCT (Butcher & Burke, 1994) and can be replaced by a propyl linker without affecting the catalytic process (Schmidt et al., 1996a). On the side of helix H4, the proposed interaction between A38 and G36 can be mediated theoretically both in canonical Watson–Crick or in sheared geometries (Gautheret et al., 1994). Nonetheless, the protection patterns of these residues are more consistent with a Watson–Crick rather than a sheared geometry, since both the N1 and N7 atoms of these residues are protected in the native ribozyme state (Butcher & Burke, 1994b). An indirect argument results from the geometry of the next base-pair, C25(N4)-U27(O4), which contains only one H-bond and which exposes to the solvent the N3 atoms of both residues, as seen by chemical probing. We can conclude from the individual modelling of loops A and B that, once sandwiched between their helical partners, they constitute extended duplexes with local backbone deformations resulting from their unusual pairing schemes.

Comparison of the theoretical and experimental accessibilities of loops A and B models

As a check of the models of loops A and B in the hairpin ribozyme, we have investigated the correlation between the reactivities in solution of the bases in the loops (Butcher & Burke, 1994b) and the theoretical accessibilities (Figure 5). The Watson–Crick data correlate very well for the unmodified or slightly modified residues as well as for the bulging residue U39, which shows one of the strongest modification rates (Figure 5A). Furthermore, the other theoretically accessible N1 atoms all belong to adenes which are involved in non Watson–Crick pairings in our model (A22, A23, A24, and A43), even though the variations in the theoretical accessibilities do not strictly follow the distribution of the experimental data. Nevertheless, the important criterion is that these N1 atoms are not involved in contact, which gives the possibility for molecular motions to modify the contribution of their accessibilities (Brunel, 1992).

For the Hoogsteen data (Figure 5B), the average theoretical accessibilities are low as in the experimental data (except for residue A32, for which the associated surface of 13.6 Å seems to be greater than the corresponding experimental reactivity). Nonetheless, the pattern of protection of adenes 23, 24, 38, and 40 is compatible with the motif presented in our model which involves these nucleotides, i.e. A23 is more reactive in solution than are either A38 or A40, whilst A24 is at background level. A noteworthy remark is that the sheared pair A23-A40 is capped by bulging residues, the dynamics of which would modify the shielding of A23 and A40.

Inter-domain cross-linking of the hairpin ribozyme

In order to provide data to help in the second step of molecular modeling, docking of the two domains, inter-domain cross-linking was carried out between the two internal loops A and B. Since very many functional group modifications in the heterocyclic bases, especially in loops A and B, were found to be highly deleterious to ribozyme activity (Chowrira & Burke, 1991; Grasby et al.,
it was decided not to use cross-linking methods that would involve the heterocyclic bases, for example photochemical cross-linking initiated by introduction of 4-thio-U, 6-thio-G or 6-thio-I residues (Favre & Fourrey, 1995; Vitorino Dos Santos et al., 1993) or interheli-cal disulphide linkages between uridine (Goodwin & Glick, 1994) or cytidine (Allerson & Verdine, 1995) residues.

By contrast, the 2'-positions of nucleoside sugars seemed particularly appropriate sites for inter domain cross-linking. In a previous study it was found that in only four cases did single 2'-deoxynucleoside substitutions in the ribozyme strand of the hairpin result in serious loss of catalytic efficiency (Chowrira et al., 1993b; Schmidt et al., 1996a). A new procedure has been described for inter-helical cross-linking of the hammerhead ribozyme in which the 2'-positions of two specific pyrimidine nucleosides were each substituted by 2'-amino-2'-deoxynucleoside residues and then modified by reaction with an aryl isothiocyanate containing a 2-pyridyl disulphide. Reduction and subsequent oxidation allowed the formation of aryl disulphide linkages between the 2'-positions. These cross-links, which are expected to span a distance of some 16 Å when fully extended, were useful in distinguishing alternative models for the folding of the hammerhead ribozyme (Sigurdsson et al., 1995a,b). We decided to apply this cross-linking strategy to a three-stranded hairpin ribozyme that we have used in previous studies (Grasby et al., 1995; Schmidt et al., 1996a). Note that recently a different disulphide cross-linking technique has been described to link the 2'-hydroxyl positions of uridine residues inter-helically in yeast tRNA^Thr (Goodwin et al., 1996).

We chose for cross-linking three pyrimidine nucleosides in ribozyme strand B (U_39, U_42 and C_44) which form part of the catalytically essential loop B (Figure 2). These are all sites where we had previously found that 2'-deoxynucleoside substitution had no significant effect on cleavage (Schmidt et al., 1996a). Most of the pyrimidine nucleosides in domain A are located in the substrate strand, but since no data is available about the sugar requirements in this strand, we chose two pyrimidine nucleosides in the catalytically important loop A (U_2 and C_3). In each case ribo-zyme-directed cleavage would result in release of the identical unconstrained pentanucleotide, which would be expected to be able to dissociate from the ribozyme strand in the same way as for a non-cross-linked substrate.

Three-stranded hairpin ribozymes were prepared by chemical synthesis and subsequent annealing in which two of the strands (substrate and ribozyme B) each carried single 2'-amino-2'-deoxynucleoside substitutions. The catalytic parameters of six such doubly functionalized pre-annealed hairpin ribozymes were measured under single turnover conditions and compared with those of the unmodified ribozyme (Table 1). The results showed that the K_M values were in each case within threefold of the unmodified ribozyme. Four of the six catalytic rates (k_{cat}) were within threefold of the unmodified ribozyme. Only two (U_2-U_42 and U_2-C_44) were slightly reduced (fivefold). The results suggested that doubly 2'-amino-functionalized hairpin ribozymes were not greatly affected in cleavage rates compared to the unmodified hairpin.

The chemistry of cross-linking is summarized in Figure 6. Essentially, the two strands containing 2'-
amino-2'-deoxynucleosides (the substrate strand being \(^{32}\)P-labelled) were first reacted with 3-isothiocyanatobenzyl 2-pyridyl disulphide (Linking agent A) to give the corresponding thiourea derivatives. After reduction with dithiothreitol (DTT) and subsequent air oxidation, intermolecular aryl disulphide bonds were formed. The hetero-linked substrate-ribozyme B was separated from homo-linked strands and unreacted strands by denaturing polyacrylamide gel electrophoresis, in a similar manner to the separation of cross-linked hammerhead RNAs (Sigurdsson & Eckstein, 1996a). In a preliminary communication describing our first cross-linking attempts, cross-linking was carried out in the presence of an inactivated ribozyme A strand (Schmidt et al., 1997). Here we found that there was no need to form an annealed structure for cross-linking. If an initial ratio of 1 : 5 of substrate to ribozyme B strand was used, acceptable conversions into hetero-linked substrate-ribozyme B could be obtained (6 to 10%), which were isolated by denaturing polyacrylamide gel electrophoresis in 1 to 5% overall yields.

Table 1. Kinetic data for the cleavage of the unmodified and the doubly functionalized 2'-amino-2'-deoxy ribozymes hairpin ribozyme under single turnover conditions

<table>
<thead>
<tr>
<th>Ribozyme</th>
<th>(K_M) [(\mu)M]</th>
<th>(k_{cat}) [min(^{-1})]</th>
<th>(k_{cat}/K_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmodified</td>
<td>0.094 ± 0.006</td>
<td>0.16 ± 0.01</td>
<td>1.7</td>
</tr>
<tr>
<td>2'-amino U({32})/U({39})</td>
<td>0.046 ± 0.009</td>
<td>0.096 ± 0.008</td>
<td>2.1</td>
</tr>
<tr>
<td>U({32})/C({44})</td>
<td>0.033 ± 0.007</td>
<td>0.028 ± 0.002</td>
<td>0.85</td>
</tr>
<tr>
<td>U({32})/U({42})</td>
<td>0.12 ± 0.04</td>
<td>0.027 ± 0.005</td>
<td>0.23</td>
</tr>
<tr>
<td>C({32})/U({39})</td>
<td>0.055 ± 0.017</td>
<td>0.12 ± 0.02</td>
<td>2.1</td>
</tr>
<tr>
<td>C({32})/U({42})</td>
<td>0.15 ± 0.05</td>
<td>0.099 ± 0.018</td>
<td>0.66</td>
</tr>
<tr>
<td>C({32})/C({44})</td>
<td>0.17 ± 0.067</td>
<td>0.067 ± 0.011</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Aryl disulphide cross-linked substrate-ribozyme B complexes were prepared from all six possible combinations of the 2'-amino-2'-deoxynucleoside substituted strands. For each combination, experiments were then carried out in parallel to measure the kinetic parameters under single turnover conditions. In each case ribozyme A strand was carefully pre-annealed in the absence of magnesium ions to either (a) the cross-linked substrate-ribozyme B complex, or (b) substrate-ribozyme B complex treated with DTT to open the disulphide linkage (Figure 7). Ribozyme cleavage was then effected by addition of magnesium ions. Since neither the folding of domain B nor formation of the substrate-ribozyme complex is reported to be significantly affected by magnesium ions (Butcher & Burke, 1994b; Cai & Tinoco, 1996), the foldings and hence the reaction pathways of the cross-linked and the DTT-treated hairpins should be identical.

Figure 6. Scheme for the cross-linking of substrate strand and RzB strand each substituted by a 2'-amino-2'-deoxynucleoside.
The kinetic parameters for the aryl disulphide cross-linked and DTT-treated ribozymes are shown in Table 2A. First, for each set of paired data (cross-linked and DTT-treated), the K_M values are within a twofold range. Secondly, the K_M values in all cases (both cross-linked and DTT-treated) are within a factor of 3 of the completely unmodified three-stranded hairpin (Table 1). Thirdly, pairwise comparisons of the DTT-treated ribozymes (Table 2A) with their corresponding 2'-amino substituted ribozymes (Table 1) are also within a twofold range, except for $C_{39}U_{42}$ which differ only by a factor of 3. All these results confirm that correct folding has taken place irrespective of the types of substitution or number of annealed strands, and that the reaction pathways of the cross-linked and DTT-treated ribozymes are identical.

Comparison of the catalytic rates (k_{cat}) of the ribozyme pairs (cross-linked versus DTT-treated) responding 2'-amino substituted ribozymes (Table 1) are also within a twofold range, except for $C_{39}U_{42}$ which differ only by a factor of 3. All these results confirm that correct folding has taken place irrespective of the types of substitution or number of annealed strands, and that the reaction pathways of the cross-linked and DTT-treated ribozymes are identical.

Table 2. Kinetic data for cleavage

<table>
<thead>
<tr>
<th>Sub</th>
<th>RzB</th>
<th>DTT</th>
<th>K_M [µM]</th>
<th>k_{cat} [min⁻¹]</th>
<th>k_{cat}/K_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Aryl disulphide cross-linked and reduced hairpin ribozymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{12}</td>
<td>U_{39}</td>
<td>+</td>
<td>0.049 ± 0.001</td>
<td>0.00021 ± 0.00002</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>U_{42}</td>
<td>+</td>
<td>0.097 ± 0.029</td>
<td>0.00010 ± 0.00001</td>
<td>0.0011</td>
</tr>
<tr>
<td></td>
<td>C_{44}</td>
<td>+</td>
<td>0.076 ± 0.014</td>
<td>0.00021 ± 0.00003</td>
<td>0.0045</td>
</tr>
<tr>
<td>$C_{1,5}$</td>
<td>U_{39}</td>
<td>+</td>
<td>0.028 ± 0.004</td>
<td>0.00098 ± 0.00005</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>U_{42}</td>
<td>+</td>
<td>0.051 ± 0.009</td>
<td>0.0035 ± 0.004</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>C_{44}</td>
<td>+</td>
<td>0.035 ± 0.009</td>
<td>0.0039 ± 0.0004</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>0.11 ± 0.01</td>
<td>0.0020 ± 0.0001</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>0.12 ± 0.02</td>
<td>0.066 ± 0.004</td>
<td>0.57</td>
</tr>
<tr>
<td>B. Alkyl disulphide cross-linked and reduced hairpin ribozymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{12}</td>
<td>U_{39}</td>
<td>+</td>
<td>0.051 ± 0.018</td>
<td>0.0023 ± 0.0004</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>U_{42}</td>
<td>+</td>
<td>0.034 ± 0.005</td>
<td>0.0046 ± 0.0003</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>U_{42}</td>
<td>+</td>
<td>0.088 ± 0.018</td>
<td>0.00011 ± 0.00001</td>
<td>0.0013</td>
</tr>
<tr>
<td></td>
<td>C_{44}</td>
<td>+</td>
<td>0.051 ± 0.026</td>
<td>0.00010 ± 0.00002</td>
<td>0.0017</td>
</tr>
<tr>
<td>$C_{1,5}$</td>
<td>U_{39}</td>
<td>+</td>
<td>0.024 ± 0.006</td>
<td>0.0088 ± 0.0005</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>U_{42}</td>
<td>+</td>
<td>0.034 ± 0.014</td>
<td>0.0072 ± 0.0012</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>C_{44}</td>
<td>+</td>
<td>0.099 ± 0.014</td>
<td>0.012 ± 0.001</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>0.091 ± 0.009</td>
<td>0.00010 ± 0.000004</td>
<td>0.00077</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>0.12 ± 0.03</td>
<td>0.022 ± 0.003</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Figure 7. Annealing of the cross-linked substrate-RzB strands with RzA strand in the absence (top right) or in the presence (bottom right) of dithiothreitol (DTT) to break the constraint of the cross-link. Each type of hairpin (cross-linked and uncross-linked) is then incubated with magnesium ion in order to effect ribozyme cleavage. P^* denotes 5'-32P-radiolabelling.
shows that two of the cross-links (U_{142}-U_{39} and U_{12}-U_{39}) show only modest reductions in catalytic rate, whereas U_{142}-C_{44} and all three cross-links originating from C_{143} in loop A resulted in significant or strong (5 to 70-fold) losses in catalytic activity. Another interesting comparison is between the k'_{cat} values for the DTT-treated ribozymes (Table 2) and the corresponding 2’-amino substituted ribozymes, which lack the thiourea pendant arms (Table 1) which might thus be expected to behave similarly. Two are insignificantly altered, two are slightly reduced, whereas two are substantially reduced (25 and 100-fold, respectively). These results suggested that the aromatic thiourea substituent might be exerting in certain cases some structural effects on the ability to reach the transition state. We therefore decided to construct and measure the kinetic parameters of a second series of cross-linked hairpin ribozymes using the same locations of 2’-amino-2’-deoxynucleoside tether points, but with a shorter and more flexible, non-aromatic, alkyl disulphide linker.

It was recently shown that 2’-amino group on oligoribonucleotides could be site-specifically reacted with a short aliphatic (two-carbon) isocyanate containing a protected thiol function to which reporter groups could be attached (Sigurdsson & Eckstein, 1996b). We thus prepared analogous but more flexible alkyl disulphide linkages between the two hairpin domains by reaction of 2’-amino groups with 2-isocyanatoethyl 2-pyridyl disulphide, reduction and subsequent oxidation (Figure 6, Linkage agent B). This alkyl disulphide linker would be expected to span about 12 Å, slightly shorter than the aryl disulphide linker. Cross-linking, purification of ribozyme B-substrate cross-links and annealing with ribozyme A strand in the presence or absence of DTT was carried out as before. Ribozyme cleavages were again effected by addition of magnesium ions and the kinetic parameters were measured under single turnover conditions (Table 2b).

Once again pairwise inspection showed that all of the combinations the K_M^0 values differ by two-fold or less except for one (C_{143}-U_{42}) which is increased threefold upon cross-linking. Further, all the K_M^0 values are within a threefold range of completely unsubstituted three-stranded ribozyme (Table 1). Finally, all six of the K_M^0 values measured for the DTT-treated ribozymes (Table 2b) and the 2’-amino substituted ribozymes (Table 1) are within a twofold range. A comparison of the k'_{cat} values of DTT-treated hairpins (Table 2b) with that of the 2’-amino substituted ribozymes (Table 1) shows only small reductions of two- to eightfold except 20-fold for C_{143}-U_{39}.

To assess the overall effects of inter-domain constraint on hairpin ribozyme cleavage, we have calculated the ratio of the catalytic rate (k'_{cat} value) of each of the cross-linked ribozymes (aryl and alkyl) to that of their unconstrained, DTT-treated counterparts (Table 3). High values of this ratio reflect marginal effects of cross-linking on cleavage rate whereas low values reflect strong effects. The results fall into three distinct categories. For two of these combinations (U_{142}-U_{39}, U_{12}-U_{39}), there are only marginal effects (two- to fourfold). In two cases (U_{142}-C_{44} and C_{143}-C_{44}) there are strong effects of cross-linking leading to drastic reductions in the ratio (up to 300-fold). For C_{143}-U_{42} there is an intermediate value (moderate effect of five to 12-fold). In all these cases the aryl and alkyl data are in broad agreement, which adds to the confidence that the presence or absence of catalytic rate reductions is related to differential effects of cross-linking restraint depending on the locations of the respective 2’-positions. For C_{143}-U_{39} there is some uncertainty as to whether this cross-link should be in the moderate or strong category. Since the shorter and more flexible alkyl linker led to the smaller effect on the ratio, it would be reasonable to place this cross-link in the moderate category.

Docking of loop A with loop B

The rank order of effects of the cross-links (marginal, moderate and strong) could now be used as a guide in the docking of the two domains. Specifically, as different docking alternatives were sampled, the complete set of 2’-2’ distances were measured for the residues that had been used in cross-linking and the process of sampling continued until a “best fit” had been obtained. However, there were also a number of other criteria which needed to be considered during the docking process.

The docking of loop A with loop B imposes a sharp turn in the sugar-phosphate backbone at the level of the hinge region between residues 14 and 15 (Komatsu et al., 1994). In vitro selection studies (Joseph et al., 1993) show a random distribution of residues 14 and “5” and probing experiments (Butcher & Burke, 1994b) bring evidence about the stabilization of base-pair A$_{15}$-U$_{49}$ and the destabilization of A$_{14}$-U$_{5}$ upon substrate binding. Therefore, the opening of the latter base-pair was assumed and we used the torsional angles in the sugar-phosphate backbone between nucleotides 13 and 15 to explore the allowed conformational

<table>
<thead>
<tr>
<th>k'_{cat} rel</th>
<th>U_{142}</th>
<th>U_{12}</th>
<th>C_{44}</th>
<th>C_{143}</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{142}</td>
<td>0.33</td>
<td>0.50</td>
<td>0.20</td>
<td>0.081</td>
</tr>
<tr>
<td>C_{143}</td>
<td>0.028</td>
<td>0.19</td>
<td>0.20</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

Table 3. Ratios of k'_{cat} values of the cross-linked k'_{cat}/reduced ribozyme k'_{cat}
space of strand A towards the loop B residues important for catalysis (Berzal-Herranz et al., 1993; Chowrira et al., 1993b).

When attempting the determination of the relative angle between the helical axis of stems A and B, we took into account the data of Komatsu et al. (1996) in addition to the cross-linking data of the present work. These authors describe how they successively branched from helix H1 (H1-construct) or helix H4 (H4-construct) a four base-pair stem-loop, respectively preceded or followed by a stretch of six unpaired adenines. This resulted in the inactivation of the H1-construct while the H4-construct remained active. The final model building results in a tilt of 80° of the helical axis of stem A towards the helical axis of stem B. With the H4-construct, the additional hairpin can stack conformational constraints on the bulging residues, U12-U42 and C34-U39, and 29 Å (U12-U42). In the case of cross-links with a moderate effect, distances are 25 Å (C34-U39) and 34 Å (C34-U39), while for the cross-links with a strong effect the distances are 37 Å (U12-C44) and 43 Å (C34-C44) (Figure 10).

The interpretation of the distance data becomes clearer when some additional criteria are considered. Of the cross-links with a marginal effect, U12-U39 involves two bulged residues, one in each domain, the conformations of which are thus not really constrained. For example, rotation of these residues by about 180° along their respective P-O3' axis shortens the distance that separates them by at least 8 Å. Therefore it would be easy to obtain an O2'-O2' distance of less than 12 Å, i.e. within the expected span of the aryl and alkyl linkers. The weak effect of this cross-link can be interpreted as an ability of these bulged residues to adopt conformations that disturb neither the docking of loop A with loop B nor the catalytic transition state of the ribozyme. Of the two other cross-links involving bulged residues, U12-U42 and C34-U39, marginal and moderate effects are observed, although the distances spanned are almost the same. This can be rationalized on the model by analysing the path followed by the cross-linking reagents for each configuration. The sugars of U12 and U42 are both pointing out on the same side of the model result-
ing in the absence of distortion of the ribozyme either in loop A or in loop B. The O2–O2 distance here could also be shortened somewhat by further rotation of the unconstrained residue U‡2. By contrast, for C‡3-U39, even if U39 were to flip, the cross-linking reagent must cross through the docked structure, a path which would produce the structural distortions experimentally observed, especially for the aryl cross-link which contains bulky aromatic rings.

Cross-linking from loop B to helix H1 as a test of the model

The cross-links used to help in molecular modeling were chosen deliberately between residues in internal loops that were not thought to be involved significantly in substrate-ribozyme binding. As a check of the model, we wished to see whether it is possible to extend the cross-links to residues expected to be further away in the model and obtain corresponding reductions in cleavage rate. The most obvious pyrimidine nucleoside sites for cross-linking which did not involve altering the strategy for determining the kinetic parameters were U‡5 and U‡7 located on the substrate strand of helix H1. Such cross-linking would involve residues involved in substrate-ribozyme binding. Nevertheless it was decided to observe what effects on catalytic cleavage such cross-linking might exert. Accordingly cross-linked hairpin ribozymes were constructed as before.

The kinetic parameters under single turnover conditions of ribozymes cross-linked to U‡5 unfortunately proved to be uninterpretable (data not shown). In practically all cases (irrespective of type of cross-link) the K_M values for the cross-linked ribozymes differed greatly from the DTT-treated ribozymes (variances of five- to tenfold). Thus, despite the preannealing step to ribozyme A strand, it seems that the pendant group at the 2'-position of U‡5 is deleterious in some way to obtaining correct substrate-ribozyme annealing. By contrast, apart from U‡7-C44 aryl, the K_M values for cross-links to U‡7 were generally more consistent (Table 4). Surprisingly however, the results did not show the expected reductions in ratio of catalytic rates. The U‡7-C44 alkyl cross-link showed a moderate loss of activity but there were only marginal effects for both U‡7-U39 and U‡7-U42. These data can only be rationalized by assuming fraying of the end of helix H1. The base-paired state of U‡7 is not a pre-requisite for catalysis, since it has been seen partially frayed in probing experiments (Butcher & Burke, 1994b). Further, the mismatch mutant U‡7-A has only a threefold effect on cleavage activity and a triple mismatch (U‡7-A)
A_{10}U_{39}A_{11} (A) has an identical k_{cat} to the unmodified substrate under multiple turnover conditions (Joseph et al., 1993). The single turnover K_M values for these mutants are, however, not reported. The ability of helix H1 to fray somewhat could provide sufficient leeway for the catalysis to occur. For cross-link U_{39}U_{42}, the stronger effect observed on cleavage implies in addition conformational strains in some important features of loop A. This distortion of loop A is most apparent for the cross-links having a strong effect on cleavage. Therefore, it is clearly impossible for loop A to adopt its native state in the cases where residues U_{39} and U_{42} are stretched to nucleotide C_{44}, although their associated distances are within 20% of the distance corresponding to cross-link U_{39}U_{42}.

Discussion

The main aim of this study was to obtain a preliminary model of the hairpin ribozyme. A second aim was to see to what extent inter-domain cross-linking techniques could be used to provide data helpful in distinguishing alternative ways of docking the two domains in the modelling process. We chose for this cross-linking study residues in the two loops A and B, and it was found possible to use the rank order of reductions in ribozyme activity to guide the docking process by comparisons to the O2’-O2’ distances as defined by the cross-links. The molecular modelling procedure has involved data and assumptions concerning only the ground state structures of the two domains. This modelling was guided by both NMR data on loop A (Cai & Tinoco, 1996) and chemical accessibility data (Butcher & Burke, 1994b). The docking of domain A with domain B, which was guided by the cross-linking data, was carried out as far as possible without significant disturbance of these starting structures. Indeed only two residues, A_{10} and U_{39}, show a decrease in accessibility following docking (Figure 5). The flexibility of the doubly bulged residues involved in U_{11}U_{39} cross-linking allows for the approach of these two residues within the theoretical maximum distances spanned by the aryl disulphide (16 Å) and the alkyl disulphide (12 Å) linkages. Yet, it is clear that for some of the residues where there are only marginal effects of cross-linking, O2’-O2’ distances are longer (21 to 29 Å). This brings two remarks. First, the cleavage rate measurements reflect each time data for a single cross-link, while the calculated distances correspond to a model for which it was assumed that all cross-links are present and compatible. This simultaneous incorporation of the complete set of cross-links in a single model forces a consensus conformation which artefactually stretches the expected distances spanned by these cross-links. Indeed slight deformations could absorb the strains induced by each cross-link. Secondly, a more intimate approach of the two domains in the catalytically active configuration can be expected. Such an intimate contact would be reached by numerous small adjustments in the fit between the two domains, in addition to kinking of one or other helix and opening of one or both looped regions without bringing significant changes in the relative rank of the inter-residue distances as defined by the cross-links.

Clues to the catalytically active structure of the hairpin ribozyme have come from studies of the functional group requirements for cleavage. This method involves substitution of individual nucleotide residues in the hairpin with nucleotide analogues carrying specific base or sugar modifications. Regarding base substitution data, an early finding was that when G_{11} in the substrate strand was substituted by inosine all detectable cleavage activity was lost (Chowriwa & Burke, 1991), suggesting that the 2-amino group of G_{11} may be involved in the cleavage mechanism. More recently, the functional group requirements of the

Table 4. Kinetic data for cleavage

<table>
<thead>
<tr>
<th>Sub</th>
<th>ReB</th>
<th>DTT</th>
<th>K_M [nM]</th>
<th>k_{cat} [min⁻¹]</th>
<th>Ratio k_{cat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Aryl disulphide cross-linked and reduced hairpin ribozymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{11}</td>
<td>U_{39}</td>
<td>0.028 ± 0.005</td>
<td>0.013 ± 0.001</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ U_{42}</td>
<td>0.033 ± 0.003</td>
<td>0.033 ± 0.001</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ C_{44}</td>
<td>0.039 ± 0.004</td>
<td>0.0028 ± 0.0002</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ + O_{2}</td>
<td>0.014 ± 0.002</td>
<td>0.033 ± 0.002</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ + + N/D</td>
<td>0.13 ± 0.02</td>
<td>0.15 ± 0.01</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td>B. Alkyl disulphide cross-linked and reduced hairpin ribozymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{11}</td>
<td>U_{39}</td>
<td>0.027 ± 0.004</td>
<td>0.0091 ± 0.0006</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ U_{42}</td>
<td>0.018 ± 0.004</td>
<td>0.0086 ± 0.0006</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ N/D</td>
<td>N/D</td>
<td>N/D</td>
<td>N/D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ + O_{2}</td>
<td>0.026 ± 0.005</td>
<td>0.0011 ± 0.0001</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ + + N/D</td>
<td>0.044 ± 0.009</td>
<td>0.012 ± 0.001</td>
<td>N/D</td>
<td></td>
</tr>
</tbody>
</table>

* Not determined.
* K_M differed by tenfold.
essential purine residues in loops A and B of a 3-stranded ribozyme were studied (Grasby et al., 1995). Loop A substitution results were generally consistent with cross-strand interactions proposed in the NMR structure (Cai & Tinoco, 1996). By contrast in loop B, it was found that the exocyclic amino groups of A30 and A33 are not required for catalytic cleavage (Grasby et al., 1995), whereas they are clearly necessary for formation of cross-strand pairing in the initially folded structure of domain B (Butcher & Burke, 1994b). These functional group studies could favour a model with structural rearrangements in the loops as the two domains interact in the transition state. However, adenines A30 and A33 could be crucial for correct folding of loop B without being involved in the ensuing catalytic process itself, as previously observed for the mutation A14-G in the hammerhead ribozyme (Bassi et al., 1996).

It can be seen from our model that the base of G1 (depicted in yellow in Figure 9) is in the anti configuration to allow pairing with A9, as seen in the NMR structure of isolated domain A (Cai & Tinoco, 1996). The exocyclic amino of G1 must play an extremely important participatory role in the cleavage of the adjacent phosphate (Chowriria & Burke, 1991) but its positioning in our model is too distant to give any clues as to how this amino group may be involved in cleavage. Further, we can find no evidence for the base to flip into a syn configuration as suggested previously (Chowriria & Burke, 1991). At this point it is worth noting that in the hammerhead ribozyme removal of the N2 amino groups of guanine G12, involved in a sheared G-A pair (and also to some extent G9) leads to severe reduction in catalytic activity despite the fact that they are far away from the cleaved phosphodiester (Fu & McLaughlin, 1992; Slim & Gait, 1992; Tuscheletal., 1993).

Data concerning the cleavage requirements for sugar residues and 2'-hydroxyl groups proved very valuable in the modelling. Since U39 can be replaced by a propyl linker, this residue acts as a flexible bulge and plays no part in catalytic cleavage (Schmidt et al., 1996a). This information was crucial to the modelling of loop B. Moreover, there are four hydroxyl groups on the ribozyme strand which have been found to be essential for cleavage, A19, G11, A24, and C25 (Chowriria et al., 1993b). The final docked configuration was reached after inclusion of a ribose zipper (Cate et al., 1996) between the two domains of the hairpin ribozyme (Figure 8) in addition to the cross-linking data which alone would have left rotational ambiguity. The ribose zipper takes into account the essential hydroxyl groups (A110 to C25 and G11 to A23). The differentiation between the interacting riboses is supported by experiment, since the 10-25 and 11-24 coupled riboses behave differently upon an increase in magnesium ion concentration. Whilst inhibition by 2'-modification at sugars 11 or 24 can be rescued an increase in magnesium ion concentration, 2'-modification at 10 or 25 cannot. Therefore, the 2'-hydroxyl groups of A24 and G11 have been proposed to be functional in magnesium binding in the transition state (Chowriria et al., 1993b). However, such a configuration of hydroxyl groups could also help in the precise positioning of the two-domain ribozyme and especially of A19 which pairs with the cleavable residue A1.

The molecular model of the hairpin ribozyme we have obtained provides a realistic and invaluable starting point for further experimental design. Further checks of inter-domain distances might be possible by choosing residues which would be expected to be reasonably close in the model and thus tolerant of cross-linking, such as C4 in helix H2 to U39 in loop B. This is beyond the scope of the current study, since hairpin ribozyme cleavage would release a different fragment, the kinetics of which would require separate validation. Further, we have also learnt that caution is needed when obtaining cross-linking data for residues involved in substrate-ribozyme binding (such as C4). It would also be interesting to carry out tests of some of the other features of the docked configuration, such as chemical substitutions of the hydroxyl groups involved in the ribose zipper motif, and how the precise conformations of loops A and B allow for the correct positioning of the ribose zipper. A range of complementary techniques can also be considered, such as fluorescence resonance energy transfer, in vitro selection and footprinting, which together with further cross-linking studies may provide additional data helpful in model refinement.

Materials and Methods

Preparation of oligoribonucleotides

Oligoribonucleotides were synthesized on solid-phase controlled pore glass (CPG) on a 1 μmol scale using 2'-O-t-butyldimethylsilylriboside-3'-O-(2-cyanoethyl-N,N-diisopropyl) phosphoramidite monomers having phenoxycetyl amino protection for A, isopropylphenoxyacetyl for G and benzoyl protection for C (Glen Research via Cambio) as previously described (Gait et al., 1991; Grasby et al., 1995; Schmidt et al., 1996a,b). 2'-Deoxy-2'- trifluoroacetylamino-3'-O-(2-cyanoethyl-N,N-di-isopropyl)phosphoramidite derivatives of uridine and cytidine were generous gifts from Dr Wolfgang Pieken (NexStar Pharmaceuticals Inc.) and required no special conditions for coupling or deprotection (Pieken et al., 1991). Oligoribonucleotides were deprotected by treatment of the CPG with methanolic ammonia followed by triethylamine trihydrofluoride/DMF (3:1) at 55°C for 1.5 h (Wincott et al., 1995; Schmidt et al., 1996a,b) and desalting via Sephadex NAP-10 (Pharmacia) filtration or by butanol precipitation (Gait et al., 1991).

Purification of the oligoribonucleotides was carried out by anion exchange chromatography on a NucleoPac PA-100 column (Dionex) (Sprout et al., 1995; Schmidt et al., 1996b) using buffer A: 10 mM and buffer B: 400 mM sodium perchlorate, 20 mM Tris-HCl (pH 6.8), 25% formamide, flow rate 3 ml min⁻¹ with gradients of 15 to 45% B over 20 minutes. Desalting was achieved via extensive dialysis against water. The purity of the chemi-
ally synthesized RNA was checked by \(^{32}P \)-labelling (Slim & Gait, 1991) followed by electrophoresis on a 20% denaturing polyacrylamide gel (PAGE).

Preparation of cross-linked substrate-ribozyme B complexes

The 2'-amino modified substrate strand (2.5 nmol) was \(^{32}P \)-radio-labelled (Slim & Gait, 1991), mixed with 2'-amino modified ribozyme strand B (12.5 nmol) and evaporated to dryness. The resulting residue was dissolved in 2 \(\mu l \) of boric acid/borax buffer (0.07 M, pH 8.6) and 2 \(\mu l \) of the cross-linking reagent (3-isothiocyanatobenzyl 2-pyridyl disulphide, Linking agent A (Sigurdsson et al., 1995a), or 2-isocyanatoethyl 2-pyridyl disulphide, Linking agent B (Sigurdsson et al., 1996b)) (100 mM in DMF) was added. The reaction mixture was left overnight at 37°C and vortexed at intervals. The solution was diluted with water (15 \(\mu l \)) and 1 M Tris-HCl (pH 7.5, 1 \(\mu l \)). The pyridyl protecting groups were removed by addition of DTT (100 mM, 50 \(\mu l \)), sodium chloride solution (0.5 M, 10 \(\mu l \)), Tris-HCl (1 M, pH 7.5, 2 \(\mu l \)) and water (65 \(\mu l \)) for three hours at room temperature. The RNAs were precipitated at −20°C for two hours by addition of ammonium acetate solution (3 M, 150 \(\mu l \)), glycerol (2 \(\mu l \), 20 mg ml\(^{-1} \)) and ethanol (1.2 \(\mu l \)). The RNA was collected by centrifugation and the supernatant removed by decantation. The pellet was washed with a further 200 \(\mu l \) of ethanol to ensure any excess water was removed. The RNAs were then air oxidized by treatment in a 2 \(\mu l \) microfuge tube with 300 \(\mu l \) of buffer C (50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 10 mM MgCl\(_2\)) overnight at 37°C. To purify the hetero-linked RNAs from the homo-linked RNAs, the reaction products were subjected to 20% polyacrylamide gel electrophoresis in the presence of 7 M urea (Gait et al., 1995a) followed by electrophoresis on a 20% denaturing polyacrylamide gel (PAGE). The single-turnover rates of cleavage (\(k_{\text{obs}} \)) were plotted as a function of ribozyme concentration over \(k_{\text{cat}} \) using Eadie–Hofstee plots as previously described (Feders & Uhlenbeck, 1992) such that \(k_{\text{cat}} \) values were obtained from the Y-intercept and \(K_M \) values from the slopes.

Molecular Modelling

The molecular modelling method is as previously described (Westhof, 1993). The independent atomic 2D-structure elements were built with the programs FRAGMENT and NAHELEX. The 3D-generated elements were then linked together, incorporating the biochemical data, interactively using the software programs FRODO (Jones, 1978; Pflugrath et al., 1983), designed for nucleic acid modelling (STG version) (Amerine et al., 1987), and MANIP (Massire & Westhof, in preparation). The resulting working models were then subjected to stereochemical and geometrical refinement in order to ensure proper geometry and to prevent bad contacts using the Konnert-Hendrickson (Konnert & Hendrickson, 1980) restrained least-squares refinement program NUCLIN/NUCLSQ (Westhof et al., 1985). At the end of each modelling step, the theoretical accessible surfaces (in \(\AA^2 \)) of the Watson-Crick (N1[R], N3[Y]) and Hoogsteen (N7[R]) positions (Richmond, 1984) are compared to the reactivities of these atoms in solution (Butcher & Burke, 1994b). Surfaces below 10 \(\AA^2 \) are usually considered spanning the range from unreactive to weakly reactive in native conditions (Brunel, 1992), since molecular dynamics are not explicitly taken into account in a rigid 3D model.Colour pictures were designed with the software DRAWNA (Massire et al., 1994). The docking of the two domains was achieved by monitoring in real time the distances between all the cross-linked residues while torsional angle variations (between residues 14 and 15) and overall helix rotations were performed using the program MANIP (Massire & Westhof, in preparation).

Acknowledgements

We thank Dr Wolfgang Piekew (Nexstar Pharmaceuticals Inc.) for provision of protected 2'-amino-2'-deoxy-nucleoside phosphoramidites, Richard Grenfell, Jan Fogg and Terry Smith for help in assembly of oligoribonucleotides, Mohinder Singh for help with polyacrylamide gel electrophoresis and Mark Farrow for advice. B.M. is supported by a Bourse-Docteur-Ingénieur Rhône–Poulenc Rorer/CNRS. Work in the laboratory of F.E. was supported by the Deutsche Forschungsgemeinschaft.

References

Edited by A. R. Fersht

(Received 18 June 1997; received in revised form 9 September 1997; accepted 17 September 1997)